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The dynamic structure factor, vorticity and entropy density dynamic correlation functions are measured for
stochastic rotation dynamics (SRD), a particle based algorithm for fluctuating fluids. This allows us to obtain
unbiased values for the longitudinal transport coefficients such as thermal diffusivity and bulk viscosity. The
results are in good agreement with earlier numerical and theoretical results, and it is shown for the first time
that the bulk viscosity is indeed zero for this algorithm. In addition, corrections to the self-diffusion coefficient
and shear viscosity arising from the breakdown of the molecular chaos approximation at small mean free paths
are analyzed. In addition to deriving the form of the leading correlation corrections to these transport coeffi-
cients, the probabilities that two and three particles remain collision partners for consecutive time steps are
derived analytically in the limit of small mean free path. The results of this paper verify that we have an
excellent understanding of the SRD algorithm at the kinetic level and that analytic expressions for the transport

coefficients derived elsewhere do indeed provide a very accurate description of the SRD fluid.
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I. INTRODUCTION

Several years ago, Malevanets and Kapral [1,2] derived a
simple and appealing algorithm—often called stochastic ro-
tation dynamics (SRD) or multiparticle collision dynamics
(MPCD)—for the mesoscale modeling of fluctuating fluids.
SRD is a particle based simulation technique with simple
discrete time dynamics consisting of consecutive streaming
and collision steps. It shares many features with Bird’s direct
simulation Monte Carlo (DSMC) algorithm [3], but uses
more efficient multiparticle collisions to exchange momen-
tum between the particles. Since there is a Boltzmann
H-theorem for the SRD algorithm, and the particle number,
momentum, and energy are locally conserved, the correct
hydrodynamic behavior is guaranteed at large length and
time scales. The algorithm therefore provides a convenient
computational tool for solving the underlying thermohydro-
dynamic equations by providing a “hydrodynamic heat bath”
which incorporates thermal fluctuations and provides the cor-
rect hydrodynamic interactions between embedded particles
or polymers. An important advantage of SRD is that its sim-
plified dynamics has enabled the analytical calculation of the
transport coefficients and made it possible to obtain a rather
complete theoretical understanding of the time-dependent
correlation functions, the relaxation to equilibrium [4,5], and
the behavior in shear flow, including shear thinning at high
shear rates [6]. Because the algorithm correctly includes
long-ranged hydrodynamic interactions and Brownian
fluctuations—both of which are generally required for a
proper statistical treatment of the dynamics of mesoscopic
suspended particles—it has been used to study the behavior
of polymers [7-10], colloids [11,12], including sedimenta-
tion [13-15], and vesicles in flow [16,17].

In its original form [1,2], the SRD algorithm was not Gal-
ilean invariant at low temperatures, where the mean free
path, N\, is smaller than the cell size a. However, it was
shown [4,18] that Galilean invariance can be restored by
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introducing a random shift of the computational grid before
every collision. In addition to restoring Galilean invariance,
this grid shifting procedure accelerates momentum transfer
between cells and leads to a collisional contribution to the
transport coefficients. Two approaches have been used to
analyze the resulting algorithm and determine the shear vis-
cosity and thermal diffusivity. In Refs. [5,19], a nonequilib-
rium kinetic approach is used to derive the transport coeffi-
cients. In Refs. [4,18], a discrete-time projection operator
technique was utilized to obtain Green-Kubo relations for the
model’s transport coefficients, and explicit expressions for
the transport coefficients were derived in accompanying pa-
pers [20-23]. The two approaches are complementary and,
for the most part, agree in their conclusions. The first is
rather straightforward and intuitively appealing, but makes
several assumptions which are not easily verified. The pro-
jection operator approach justifies in detail several assump-
tions used in the nonequilibrium calculations of Refs. [5,19];
it can also be used to analyze the transport coefficients of the
longitudinal modes, namely the bulk viscosity and thermal
diffusivity, which are hard to calculate analytically in the
nonequilibrium approach [5]. Note, in particular, that the col-
lisional contribution to the thermal conductivity has not yet
been determined using the nonequilibrium methods.

In spite of some claims to the contrary [5], both ap-
proaches yield the same results for the transport coefficients.
Table I contains a summary of both the collisional and ki-
netic contributions to the transport coefficients, including
references to the original source of the results; the table cap-
tion also provides a brief synapsis of some misprints in the
literature which may lead to confusion. Simulation results
have generally been in good agreement with these predic-
tions. This is particularly true for the shear viscosity, where
the results of equilibrium measurements of vorticity fluctua-
tions [4,18] and the Green-Kubo relations [20,21] are in ex-
cellent agreement with nonequilibrium measurements in
shear [5,19] and Poiseuille [24] flow. The situation with the
transport coefficients of the longitudinal modes, namely the
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TABLE I. Theoretical expressions for the shear viscosity v, the thermal diffusivity Dz, and the self-diffusion coefficient D, in both two
and three dimensions. M denotes the average number of particles per cell, « is the collision angle, kg is Boltzman’s constant, 7 is the
temperature, 7is the time step, m is the particle mass, and a is the cell size. Except for self-diffusion constant, where there is no collisional
contribution, both the kinetic and collisional contributions are listed. The expressions for shear viscosity and self-diffusion coefficient include
fluctuation corrections for small M; however, for brevity the relations for thermal diffusivity are correct only up to O(1/M) and O(1/M?) for
the kinetic and collisional contributions, respectively. Both kinetic and collisional contributions to shear viscosity have been calculated using
two complementary approaches, equilibrium Green-Kubo relations [18,20-23] and a non-equilibrium approach [5,19]. Results from both
approaches are in complete agreement. Similarly, the kinetic contribution to thermal diffusivity has also been calculated using these two
approaches. The predictions of both approaches are identical in two dimensions and agree up to (and including) O(1/M) in three dimensions;
higher order contributions in 1/M were not considered in the Green-Kubo approach. The kinetic contribution to thermal diffusivity
calculated using the nonequilibrium approach was taken from Ref. [35], since there appear to be several misprints in Egs. (62), (63), and (64)
of Ref. [5]. The collisional contribution to thermal diffusivity has been calculated in both two and three dimensions in Refs. [22,23]. Because
of space limitations, only the leading terms in 1/M are given here. For the complete expression, the reader is referred to Ref. [23]. To the
best of our knowledge, the fluctuation corrections for self-diffusion coefficient are presented here for the first time.

Kinetic (terms below Collisional (terms below

Transport coefficient Dimension (d)

to be multiplied by kgT7/2m)

to be multiplied by a?/7)

2 M
Shear viscosity, v (M~1+e)sin(a) 1
’ W(M—1+e‘M)[l—cos(a)]
3 SM i
(M—=1+e™M)[2-cos(a)—-cos(2a)]
2
Thermal diffusivity, Dy d 2d|(7-d 1 1 1
3 1-cos(a) +M(T_chcz(a/2)) 3(d+2)M(1_1171)[1_C0S(a):|
2
Self-diffusion coefficient, D am _
; [1-cos(a@)](M—1+e™)

bulk viscosity and thermal diffusivity, is somewhat less clear.
The only reliable measurements of the thermal diffusivity
have entailed equilibrium measurements of the correspond-
ing Green-Kubo relation [20-23] and a nonequilibrium mea-
surement obtained by setting up a temperature gradient and
measuring the resulting energy flux in a regime where the
collisional contribution is negligible [5].

In this paper we take an alternative approach based on an
analysis of the equilibrium fluctuations of the hydrodynamic
modes to directly measure the shear and bulk viscosities and
thermal diffusivity. Starting with an analysis of vorticity
fluctuations to determine the shear viscosity, measurements
of the dynamic structure factor are then used to deduce the
values of the speed of sound, the thermal diffusivity, and the
bulk viscosity. Measurements of the temporal behavior of the
entropy correlations are also used to obtain a direct indepen-
dent measurement of the thermal diffusivity. We present a
quantitative measurement of the dynamic structure factor for
SRD. An earlier measurement by Inoue et al. [25] lead to
unphysical results in the large frequency limit, and could not
be used to determine the transport coefficients.

The results of these measurements verify directly that the
bulk viscosity is zero for this algorithm. In addition, in
agreement with earlier work [5,18-22], results for the shear
viscosity and the thermal diffusivity are in excellent agree-
ment with the theoretical predictions presented in Table I for
a wide range of particle densities and mean free paths. How-

ever, as noted originally in Ref. [20], and discussed in more
detail in Ref. [22], correlations between particles occupying
the same collision cell at different time steps lead to an en-
hanced kinetic contribution to the transport coefficients. This
breakdown of the molecular chaos approximation becomes
pronounced at small mean free path, A, since particles do not
travel far between collisions and tend to repeatedly have the
same collision partners. For most transport coefficients, this
additional contribution to the transport coefficients is masked
by the collisional contribution, which dominates in the small
mean free path regime. The effect is particularly pronounced,
however, for the self-diffusion coefficient, for which there is
no collisional contribution. Indeed, Ripoll ef al. [26,27] have
observed that the self-diffusion coefficient is significantly
larger than the theoretical prediction of Refs. [18,21] for
small A/a. Ripoll et al. provided a semianalytical description
of this behavior in which they determined numerically the
number of particles sharing the same cell as a function of
time. In this paper, we provide a detailed discussion of the
leading correlation corrections to the kinetic contribution of
both the shear viscosity and the self-diffusion coefficient and
determine analytically the probability that two and three par-
ticles are in the same collision cells for consecutive time
steps.

The remainder of the paper is organized as follows. After
a brief summary of the SRD algorithm in Sec. II, the hydro-
dynamic equations of a simple liquid are reviewed and the
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correct form of the constitutive equations are discussed in
Sec. III. The consequences of the fact that angular momen-
tum is not conserved in the SRD algorithm are summarized,
and the correct form of the viscous stress tensor is discussed.
In particular, it is emphasized that in two dimensions, there is
no difference between the viscous stress tensor of a simple
isotropic fluid and an SRD fluid. The slight differences in
three dimensions leave the form of the Navier-Stokes un-
changed, with only a reinterpretation of the coefficient of
sound attenuation. Section IV contains a fairly detailed deri-
vation of the dynamic correlation functions in a simple lig-
uid. The discussion follows rather closely that of Ref. [28],
but is included because several aspects of the derivation are a
bit subtle and are generally not addressed in the literature.
Explicit expressions for the vorticity, density, and entropy
density dynamic correlations functions are presented. In Sec.
V, these results are used to determine the shear and bulk
viscosities and the thermal diffusivity. The agreement with
the theoretical predictions summarized in Table I is excellent.
Section VI contains a detailed discussion of the consequence
of the breakdown of the molecular chaos approximation at
short mean free paths. While correlation effects do not
change the collisional contributions to the transport coeffi-
cients [22], they do dramatically increase the amplitude of
the kinetic contribution. In addition to deriving the form of
the leading correlation contributions to the shear viscosity
and the self-diffusion coefficient, the probabilities that two
(p,) and three (p3) particles are in the same collision cells at
consecutive time steps are derived analytically in the limit
N/a—0. More generally, simulation results are used to show
that p, is solely a function of N/a. In the case of the shear
viscosity, it is shown that inclusion of the leading correlation
corrections yields results in surprisingly good agreement
with measurements of the viscous stress correlations. For the
self-diffusion coefficient, however, the correlation correc-
tions for larger time intervals are large, and dramatically in-
crease the measured value of the self-diffusion coefficient for
mean free paths smaller than the cell size. It is important to
note that the correlation corrections considered here—arising
from particles which collide with the same particles in con-
secutive time steps—are similar to those which occur in
dense fluids interacting through soft potentials, and should
therefore be interpreted as a “potential” or “collisional” con-
tribution to the velocity or stress correlation functions rather
than a precursor of the power-law (long-time) tails observ-
able at longer times. We believe that it is important to dis-
tinguish between these two effects, since long time tails are
also visible at large mean free paths where these corrections
are negligibly small. Although the same approach can be
used to calculate contributions to long-time tails, the corre-
sponding probabilities are much harder to estimate.

The results of this paper verify that we have an excellent
understanding of the SRD algorithm at the kinetic level and
that—with the exception of the self-diffusion coefficient—
the analytic expressions for the transport coefficients given
in Table I do indeed provide a very accurate description of
the SRD fluid. Furthermore, the analysis of the dynamical
structure factor and the dynamic entropy density correlation
function verify directly that the algorithm satisfies the
fluctuation-dissipation theorem. While this is to be expected
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for the current algorithm, which satisfies the necessary
semidetailed balance conditions [1,18], verification studies
of this type will be important for generalizations of the algo-
rithm which model excluded volume effects through the use
of biased multiparticle collision rules which depend on the
local velocities and densities [29,30].

II. MODEL

In the SRD algorithm, the fluid is modeled by particles
with continuous spatial coordinates r;(f) and velocities v;(7).
The system is coarse grained into the cells of a regular lattice
with no restriction on the number of particles in a cell. The
evolution of the system consists of two steps: streaming and
collision. In the streaming step, the coordinate of each par-
ticle is incremented by its displacement during the time step,
7. Collisions are modeled by a simultaneous stochastic rota-
tion of the relative velocities of every particle in each cell. As
discussed in Refs. [4,18], a random shift of the particle co-
ordinates (or, equivalently, the cell grid) before the collision
step is required to ensure Galilean invariance. All particles
are shifted by the same random vector with components in
the interval [—a/2,a/2] before the collision step. Particles
are then shifted back to their original positions after the col-
lision. If we denote the cell coordinate of the shifted particle
i by &, the algorithm is summarized in the equations

ri(t+7) = 1t) + 7V,{0), (1)

vilt+ 1) =ulgi(1+ 1]+ @£+ 1] {vi()) —u[&(r+ D]},
()

where w(&]) denotes a stochastic rotation matrix, and u(&)
= jEkE &V is the mean velocity of the particles in cell &'
All particles in the cell are subject to the same rotation, but
the rotations in different cells are statistically independent.
There is a great deal of freedom in how the rotation step is
implemented, and any stochastic rotation matrix consistent
with detailed balance can be used. In two dimensions, the
stochastic rotation matrix, e, is typically taken to be a rota-
tion by an angle +a, with probability 1/2 (see Refs.
[4,18,20]). In three dimensions, one can perform rotations by
an angle a about a randomly chosen direction, where all

orientations of the random axis occur with equal probability
(Model A in Ref. [21]).

III. HYDRODYNAMICS AND TRANSPORT
COEFFICIENTS

There is a hydrodynamic mode associated with each con-
served density in a fluid. For a simple liquid, the conserved
quantities are the particle mass density, p(r,z), the momen-
tum density, g(r,¢), and the energy density, &(r,7), and the
corresponding microscopic conservation laws are

&tﬁ(r’t) + aﬁgAB(r’t) = O’ (3)
atgAa(r’t) + ﬂﬁ%aﬁ(r’t) = 09 (4)

and
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3,&(r,1) + dgRa(r,0) = 0, (5)

where %aﬁ(r,t) are the Cartesian components of the micro-
scopic stress tensor and ¥,(r,?) is the @ component of the
microscopic energy current density. While Egs. (3)—(5) are
microscopically exact, macroscopic constitutive relations are
required to close the system of equations. The constitutive
equations relate local nonequilibrium averages of g(r,z),
Tap(r,1), and X,(r,?) to the local hydrodynamic variables,
p(r.0)=(p(r.0)), g(r.0)=(&(r.1)), e(r.f)=(&r.1), and
their gradients. For a simple isotropic liquid, the constitutive
relations have the form [28,31]

(§a(r,0) = galr,1), (6)
<%aﬂ(r’ t)> = p(r’t) 5(13 - O-aﬁ(r’t) (7)

=p(l‘, t) 50(,3 - V[(’)la,glg(r,[) + &ﬂga(r, t)
- (2/d) 5aﬁﬁhg)\(r,t)] - ‘yéaﬁa)\g)\(r,t)’ (8)

(Xa(r.0) = [(€+ p)Iplgo(r.1) = kd,I(r.1), )

where p(r,7) and T(r,7) are the local pressure and tempera-
ture fields, respectively. p is the equilibrium pressure and € is
the equilibrium energy density; v and vy are the kinematic
shear and bulk viscosities, respectively, and « is the thermal
conductivity. d is the spatial dimension, and o,z is the mac-
roscopic viscous stress tensor. There are both nonderivative,
reactive, and dissipative contributions to the constitutive re-
lations. The form of the reactive terms can be inferred from
Galilean invariance. The dissipative terms follow from an
expansion of the current densities to first order in the gradi-
ents of the local conjugate forces g(r,?), p(r,1), and T(r,?);
symmetry dictates the general form of these terms. Nonlinear
terms in the constitutive equations have been omitted be-
cause we only require the linear hydrodynamic equations in
the following.

The local equilibrium averages of Egs. (3)—(5), together
with the constitutive relations given by Egs. (6)—(9) provide
a complete description of the hydrodynamics of the liquid.
The resulting linearized Navier-Stokes equation is

0,8 o(1,1) + 9 (r,1) — V35 g, (r,1)
( d-2
| y+
YTy

The corresponding equations for the mass density and energy
density are

V) L?a(?)\g)\(r,t) =0. (10)

8,p(r,t) + o"ﬁgﬁ(r,t) =0 (11)
and
o,e(r,1) + [(e+ p)/plorg,(r,0) — kA T(r,0) =0, (12)

respectively.

Because of the cell structure introduced in SRD to define
the collision environment, angular momentum is not con-
served in a SRD collision. As a consequence, the macro-
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scopic viscous stress tensor is not a symmetric function of
the derivatives d,gs, and instead of Eq. (8), the constitutive
equation has the general form [23]

<%Q,B(r’ t)> = p(r7t) 5aﬁ - Vl[(?agﬁ(r7t) + aﬁga(r7 t)
= (2/d) 6, 30he\ (1, 1) = V[ g8 o(r.1) — I8 p(r,1)]
— Y3apirgi(r,1), (13)

where v, is a new viscous transport coefficient associated
with the nonsymmetric part of the stress tensor. Because the
kinetic contribution to the microscopic stress tensor is sym-
metric, 5"=0 and "=} It is also easy to show that
yki"=0, so that the kinetic contribution to the macroscopic
viscous stress tensor is

b (1) = VT agp(r.1) + Ipgalr.1) = (21d) 8, 0r8 (x.1)].
(14)

In Ref. [23], it was also shown that the collisional contribu-
tions to the viscous transport coefficients fulfill the relation

[(d - 2)/d]v" = 5 + ' = 0, (15)

and that the collision contribution to the macroscopic viscous
stress tensor is

O'Z(’)é(l',l) ="+ VS"I)&Bga(r,t) = C"lr?ﬂzgfa(r,t), (16)

up to a tensor with vanishing divergence, which will there-
fore not appear in the linearized hydrodynamic equations.
The resulting linearized hydrodynamic equation for the mo-
mentum density is, therefore

d-2 ..
9,8(1,1) + 9p(r,1) — v3 g, (r,1) — Tvkm(?a(?xgx(r,t) =0,

(17)

where v=1""4+ 1! and 15" and 1°°' are the kinetic and col-
lision contributions to the shear viscosity. The equations for
the mass and energy densities remain unchanged. The bulk
viscosity does not appear in Eq. (17) because theory predicts
that it is zero for the SRD algorithm. Comparison of Eq. (17)
with Eq. (10) shows that the only difference between the
Navier-Stokes equation for an isotropic liquid with y=0 and
an SRD fluid is in the coefficient of the d,d,g,(r,1) term,
where v is replaced by X"; this leads to a correction to the
sound attenuation coefficient associated with the viscous dis-
sipation of longitudinal sound waves in three dimensions.

IV. DYNAMIC CORRELATIONS

Spontaneous thermal fluctuations of the density, p(r,?),
momentum density, g(r,¢), the energy density, €(r,7) are dy-
namically coupled, and an analysis of their dynamic correla-
tion functions in the limit of small wave vectors and frequen-
cies can be used to determine a fluid’s transport coefficients.
In particular, because it is easily measured in dynamic light
scattering, x-ray, and neutron scattering experiments, the
density-density correlation function—the dynamic structure
factor—is one of the most widely used vehicles for probing
the dynamic and transport properties of liquids [32].
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In the following, we summarize the predictions of linear-
ized hydrodynamics for the dynamic correlation functions of
simple liquids in the hydrodynamic regime, and then use the
results to analyze SRD simulation data in order to validate
the theoretical results for the transport coefficients given in
Table 1. Our discussion follows closely that of Ref. [28], but
is included because the derivation using Laplace transforms
is not widely used in the literature, and the detailed results
are needed in the subsequent analysis. The starting point is
the linearized hydrodynamic equations given in Eqgs.
(10)=(12). There are four modes, one transverse shear mode,
and three coupled longitudinal modes. In order to keep the
analysis general, we include the bulk viscosity in this sec-
tion.

Transverse fluctuations. Divide the momentum density
g(r,?) into transverse and longitudinal components,

g(r,))=g(r,0) +g,(r,1), (18)

where VX g(r,1)=0 and V-g (r,r)=0. Taking the curl of
the Navier-Stokes equation, the transverse component of the
momentum density, g, (r,?), is found to satisfy the diffusion
equation

dg, (r,1) =vog (r,1). (19)

By performing the Fourier-Laplace transform (Im z>0)

g (k,2) :f dte’”f dre g (r,1), (20)
0 %

the solution of the initial value problem, which describes the
response of the transverse mode to an initial perturbation
dg | (k,=0) from equilibrium, is

Qg g (kz)=idg, (k,1=0), (21)

where Q =z+ik*w.

Longitudinal fluctuations. For the longitudinal compo-
nents, it is convenient to introduce the variable g(r, ), which
is (T times) the entropy density,

a(r,0) = e(r,n) - HTPp(r,ﬂ (22)

in place of the energy density and use the relations

vp(r,z)z(g—’;) vp(r,t)+‘—T/<Z—’;) V)  (23)
N p

and

VT(r,t):(Z—Z) Vp(r,t)+‘—;<%> Vq(r,), (24)
s

p

where S is the total entropy, to eliminate the pressure and
temperature fields. Taking the Fourier-Laplace transform, the
resulting coupled set of equations for the longitudinal modes
can be written as
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z -k 0
\ op(k,
—k? z+ikD, ——(—p>k plle.2)
T\38/, 8g,(k,z2)
oT Sq(k,
ik2K<—> LI AL
(9p N pPey
o
Sp(k,t=0)
=i| 8g(k,r=0) |, (25)
Sq(k,t=0)

where, for example, dp(k,t=0) = p(k,7=0)—p; p is the equi-
librium density, and k=|k|. Note that since 8g;(k,z)Ik, the
equation for the longitudinal component of the momentum
density is a scalar equation. When writing Eq. (25), we have
used the relations

T(as) T(aS) ) (ap)
pc,="\—, pc,=7| ], and c°=| —
v\dr/, v\dr/, /s

=£E<a_p) - (26)
c,\dp/r d m

to simplify the final expression. Here ¢, and c, are the spe-
cific heat capacities at constant volume and pressure, respec-
tively. ¢ is the adiabatic speed of sound, and D,=2[(d
—1)/d]v+y. Equation (25) describes how the longitudinal
modes relax in response to initial perturbations Sp(k,z=0),
8g)(k,7=0), and 5g(k,=0). The zeros of the determinant of
the coefficient matrix, €2, give the complex frequencies of
the hydrodynamic modes of the system. For small wave vec-
tor Kk, the solutions of the resulting cubic equation are (up to
terms of order k%)

7= xck- ék2F (sound poles) (27)

and
z=—ik*Dy (heat pole), (28)

where Dy=x/(pc,) is the thermal diffusivity; I'=Dy(c,/c,
—1)+Dy, is the sound attenuation coefficient. In deriving
Egs. (27) and (28), the thermodynamic relation

v(ar\ (4
DycX(c,Jc, - 1)=K—(—> (—p> (29)

has been used.
Correlation functions: The matrix of dynamic correlation
functions

S;j(k.2) = f d(r=1") J d(r —x')e )T
0 Vv

X([Ai(r,0) = (ANI[A;(x" 1) —(Ap])  (30)
is given by [28]
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Sii(k,2) = ikpT(Q™)x,1(Kk) (31)

where there is a sum over repeated indices. For the trans-
verse modes, () is simply a scalar function defined in Eq.
(21); for the longitudinal modes, however, it is a matrix, and
the subscript indices denote the modes Jp(k,r=0), dg(k,t
=0), and 5g(k,=0). x,;(k) is the static susceptibility matrix.
The correlation function for the transverse mode follows
from Egs. (21) and (31) and XngL(k)=p’ and is given by

Seve, kD)= (32)
Taking the inverse Laplace transform,
2
Se ¢, (k1) = pkgTe %1, (33)

For the longitudinal modes, inverting €} and using the
results Xng(k)=0, XgHgH(k)zp’ limk—»() )(pp(k)=p(o7p/c7p)7,
limg_o x,(K)=pTc,, and lim;_ x,,(k)=(T/m)(dp/T),
(where m is the particle mass), one finds

. 6’p) y ( z+ik’[T + Dy{c,/c, - 1)])
S, ,(k,z) =ikgTp| — | | —
polko2) = ik p( dp T[ 22— Pk + izk’T

Cp
1
+ (1 - @>—2} (34)
¢,/ 2+ ik°Dy
and
c, T
S,k 2) = ikpT—L2— (35)

7+ ik*Dy

for the two scalar modes. Note that all nonvanishing static
susceptibilities are symmetric in k, so that k-dependent cor-
rections to x;; are O(k*) and therefore negligible in these
expressions. For details, the reader is referred to Refs.
[28,31].

The complete spectral transform of the time-dependent
density correlation function, the dynamic structure factor,
Spplk, w), is obtained by setting z=w+id and taking the limit
8—0 in Eq. (34). The final result is [28],

(cv/cp)c2k4F
(0? = 2k%)* + (wk’T)?

dp
Shp(k’ w) = 2kBTp( 5) T|:
(1- cv/cg)kzDT
w* + (K’Dy)?
(0? = kP K*Dy

(1 C—) } (36)
B _cp (0® = M)+ (wkT)? |

In experiments, it is genenerally not possible to measure
S,(k,t) directly. In simulations, however, both S,,(k,?) and
Spplk, @) can be measured for a range of mean free paths and
collision angles. The simplest way to determine S,,,(k,?) is to
take the inverse Laplace transform of Eq. (34). In light of
Egs. (27) and (28), it is sufficient to keep terms O(k) in real
parts and O(k?) in the imaginary parts when evaluating the
resulting contour integral. The final result is

PHYSICAL REVIEW E 74, 056702 (2006)

J
Spp(k,l)=2kBTp<_p) (&e‘rkzﬂ2 cos(ckt)
op/r Cp

+ [E + (EB - I)DT}If sin(ckt)}
2 c, c

+ (1 - @>e-’3rk2f). (37)

Cp

Using Eq. (35), it can be shown that the correlation func-
tion for the entropy density, ¢(r,7), is given by

S,q(k:1) = pe kpT2e P11, (38)

Note that Eq. (38) provides an independent way to directly
measure Dr.

These results remain valid for the SRD fluid. The only
modification is that D,=2[(d—1)/d]v""+ 1, so that the
sound attenuation coefficient is

F=DT<52- 1) +2<d—1>u‘“n+ ol (39)
c, d

Note that in two dimensions, the sound attenuation coeffi-
cient for a SRD fluid has the same functional dependence on
Dy and v= X"+ 1! as an isotropic fluid with an ideal gas
equation of state (for which y=0). Finally, since SRD de-
scribes an ideal fluid, p=pkzT/m and c,=kg/m+c,=(d
+2)kg/2m.

V. MEASUREMENTS

In our SRD simulations in two dimensions, the mass, mo-
mentum, and energy densities are measured at the cell level.
The cell densities, A°(&,1), are defined at the discrete set of
coordinates §=am, with m,3=1,...,L, for each spatial di-
mension [18]. A superscript ¢ will be used to denote that the
corresponding quantity is defined at the cell level. The Fou-
rier transform of the cell variables are

AC(k,1) = >, A°(&,1)e™E, (40)
&
and the inverse transform is
1 .
AS(&1) = ;12 AC(K,1)e ¢, (41)
Kk

The Fourier-Laplace transforms of the corresponding dy-
namic correlation functions are

Si(k,2) = f d(t—1') 2 e=ks
0 ¢

X([A{(&.0) - (ADIA}0,1') = (AD]).  (42)

Transverse fluctuations. Instead of the evaluating the cor-

relation function of the transverse component of the momen-

tum density, it is more convenient in simulations to measure

the vorticity, w(r,r)=V X g, (r,7). In two dimensions the

vorticity is a scalar, w,(r,7), and the dynamic correlation
function decays as
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FIG. 1. Normalized vorticity correlations as a function of time
for k=2"(1,0) (dotted-dashed lines), k=27(1,1) (dotted lines) and
=2777(2,0) (dashed lines). The solid line shows Eq. (43) using the
theoretical expressions given in Table I for shear viscosity. The
decay profiles were fitted to Eq. (43) to obtain values for the shear
viscosity v. (a) Na=1.0, a=120°, (b) N/a=0.1, a=60°. Param-
eters, L/a=32, M=15, and 7=1.0.

S, (k1) =K2SS (k1) = pkTh2e™ ", (43)

Simulation results for the normalized vorticity correlation
function for N/a=r7VkgT/m=1.0 with collision angle «
=120° and N/a=0.1 with «=60° are shown in Fig. 1. In the
simulations, both the cell size a and particle mass m are set
to unity, and time is measured in units of 7. Here, as with all
results presented in this paper, averages are taken over
400 000 iterations and five different random number seeds.
The solid lines in Fig. 1 are a plot of Eq. (43) using the
theoretical prediction for the shear viscosity (sum of kinetic
and collisional contributions) given in Table I, for the small-
est wave vector k=(27/L)(1,0). The agreement is excellent.
We have also fitted the decay profiles for the lowest two
wave vectors, namely to k=(2#/L)(1,0) and k=(27/L)
X(0,1) with Eq. (43), and averaged the result to obtain es-
timates of the shear viscosity as a function of collision angle
« for different mean free paths. The results are presented in
Fig. 2, and, as expected, the agreement between measured
viscosities and the expressions given in Table I is very good.
These measurements clearly show that the theoretical expres-
sions for the shear viscosity are accurate even for intermedi-
ate mean free paths.

Longitudinal fluctuations. Density fluctuations were mea-
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FIG. 2. Shear viscosity v, in units of a2/ 7 for a=7=1.0, as a
function of collision angle « for mean free paths N/a=0.1 (»), 0.5
(M), and 1.0 (@) measured using the decay of the vorticity corre-
lations. The solid lines are the theoretical prediction given in Table
1, i.e., the sum of the kinetic and collisional contributions. Param-
eters, L/a=32, M=15.

sured at the cell level, and their Fourier-Laplace transform is
taken to determine the structure factor. A naive implementa-
tion of this procedure gives wrong results in the large fre-
quency region of the spectrum [25], resulting in finite con-
tributions at all frequencies. This problem is well known to
experimentalists [33], the solution is to first do a Fourier
transform to obtain density-density correlations as a function
of time, symmetrize this result around =0, and then perform
the Laplace transform from —c to %. Results for the structure
factor for N/a=1.0 with collision angle a=120° and A/a
=0.1 with @=60° are shown in Figs. 3(a) and 3(b), respec-
tively. The solid lines are the theoretical expression given by
Eq. (36) using ¢=+2kzT/m and values for the transport co-
efficients obtained using the expressions in Table I, assuming
that the bulk viscosity y=0. The agreement is excellent.
There are three Lorentzian peaks, a central “Rayleigh peak”
caused by the heat diffusion and two symmetrically dis-
placed “Brillouin peaks” caused by the sound waves. The
dotted vertical lines in the figures show the theoretically pre-
dicted frequencies of the adiabatic sound waves in a fluid
with an ideal gas equation of state.

We have also measured time-dependent density correla-
tions for various wave vectors. Figures 4(a) and 4(b) contain
a comparison of the measured time-dependent density corre-
lation functions with the predictions of Eq. (37), for N/a
=1.0 with collision angle a=120° and N/a=0.5 with «
=90°. The agreement is excellent for all wave vectors con-
sidered. The bulk viscosity and thermal diffusivity were also
independently measured by fitting these time dependent den-
sity correlations to the form given by Eq. (37) while using
the theoretically predicted shear viscosity in the sound at-
tenuation coefficient, keeping Dy and vy as free parameters.
The results are shown in Fig. 5 as a function of the wave
vector squared, for the same set of parameters as in Fig. 4.
Once again, the theoretical expression for Dy is confirmed,
and the bulk viscosity is zero.

In order to obtain an independent measure of the thermal
diffusivity, we have measured the temporal behavior of the
entropy correlations, S; q(k,t). The results are shown in Fig. 6
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FIG. 3. Normalized dynamic structure factor, S;p(k,w)/ Xpp(h),
in units of kgT'7, for k=2f(l ,1) and (a) N/a=1.0 with a=120°, and
(b) N/a=0.1 with a=60°. The solid line is the theoretical prediction
obtained using Eq. (36) and the expressions for the transport coef-
ficients given in Table I. The dotted lines show the predicted posi-
tions of the Brillouin peaks using the dispersion relation w==*ck.
Parameters, L/a=32, M=15, and 7=1.0.

for N/a=1.0 with collision angle a=120° and A/a=0.5
with @=90°. As expected, these corrrelations decay expo-
nentially for all wave vectors considered. The solid lines in
Fig. 6 are a plot of Eq. (38) for the smallest wave vector k
=(27/L)(1,0), using the theoretical prediction for the total
thermal diffusivity, Dy (see Table I), and the agreement is
again very good. As was done for the vorticity measure-
ments, we have also fitted the decay profiles for the lowest
two wave vectors with Eq. (38), and averaged the results to
obtain independent measurements of the thermal diffusivity.
The results for these measurements are shown in Fig. 7 as a
function of the collision angle « for A/a=0.5 and N/a=1.0.
The theoretical values obtained using the formulas for D7 in
Table I (sum of kinetic and collisional contributions) are
shown in solid lines. These results are the first direct equi-
librium measurements of the thermal diffusivity.

Finally, it is important to emphasize that just as for the
shear viscosity, collisional contributions provide the domi-
nant contribution to the thermal diffusivity at small mean
free path. Figure 8 shows the theoretical predictions for both
the collisional and kinetic contributions to the shear viscosity
and thermal diffusitivity (inset) as a function of the mean
free path A/a. Collisional contributions to both transport co-
efficients are particularly important for small mean free paths
and small M.
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FIG. 4. Normalized density correlations, S¢ p(k,t)/ S;p(k,O), as a
function of time, for k=2Tw(1,O) (@), k=f(l,1) (M), and k
=2T7T(2,0) (»). The solid lines are the theoretical predictions ob-
tained using Eq. (37) and the expressions of transport coefficients
given in Table I (a) NM/a=1.0, @=120°, (b) N/a=0.5, @=90°. Pa-
rameters, L/a=32, M=15, and 7=1.0.

VI. CORRELATION EFFECTS

Green-Kubo relations for the SRD transport coefficients
have been derived in Ref. [18] and analyzed in Refs.
[20-23], where it was shown that there are both kinetic and
collisional contributions to the shear viscosity and the ther-
mal diffusivity. The collisional contributions to these trans-
port coefficients have been discussed in detail in Ref. [23].

The kinetic contribution to the transport coefficients have
been derived by several groups [1,5,20-22] assuming mo-
lecular chaos. The results of these calculations are summa-
rized in Table I. Simulation results for the shear viscosity and
thermal diffusivity have generally been found to be in good
agreement with these predictions. However, it is known that
there are correlation effects for A/a smaller than one [22].
They arise from correlated collisions between particles that
are in the same collision cell for more than one time step. In
the following, we expand on the discussion of Ref. [22] and
calculate the first correlation corrections to both the viscosity
and the self-diffusion coefficient explicitly. Similar calcula-
tions can in principle be done for the correlation contribu-
tions to thermal diffusivity. The reason that these corrections
to v and Dy are generally negligible is that they are only
significant in the small N/a regime, where the collisional
contribution to the transport coefficients dominates.

Figure 8 shows a comparison of both kinetic and colli-
sional contributions to shear viscosity and thermal diffusivity
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FIG. 5. Fitted values for the bulk viscosity y (@) and thermal
diffusivity Dy (CJ), in units of a?/7, as a function of the wave vector
squared for (a) AM/a=1.0 and @=120°, (b) A/a=0.5 and a=90°.
Data was obtained by fitting the time-dependent density correlations
(see Fig. 4) using Eq. (37) while keeping D7 and v as free param-
eters. Dashed and dotted lines represent the theoretically predicted
values for y and Dy, respectively. System size L/a ranges from 32
to 128. Parameters, M=15 and 7=1.0.

(inset) for M=3 and a=60°. For these parameters, correla-
tion effects are most pronounced when both contributions are
comparable, i.e., at a mean free path of N/a=0.25 for v and
Na=0.1 for D; (see Fig. 8). On the other hand, because
there are no collisional contributions to the self-diffusion co-
efficient, correlation corrections dramatically increase the
value of this transport coefficient in the small \/a regime. It
is important to note that there are no correlation corrections
to the collisional contributions so that the expressions for the
collisional shear viscosity [5,22,23] and collisional thermal
diffusivity [22,23] are exact.

In the following, we restrict ourselves to two dimensions;
the same analysis, however, can also be used in three dimen-
sions. Expressions for the shear viscosity and the self-
diffusion coefficient in this section obtained in the molecular
chaos approximation will include contributions from fluctua-
tions in the number of particles per cell. However, when
calculating correlation corrections, we will assume that the
number of particles per cell, M, is fixed. Including these
fluctuations is straightforward but tedious, and since it would
not provide any additional insight into the underlying
phenomena, we have decided to ignore this effect in the
following.
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FIG. 6. Normalized entropy correlations, S;q(k,t)/ S;q(k,O), as a
function of time for k=2T’T(1 ,0) (dotted-dashed lines), k=2T”(l 1)
(dotted lines), and k=2777(2,0) (dashed lines). The solid line shows
Eq. (38) using the theoretical expressions for the thermal diffusivity,
Dy, given in Table I. The decay profiles are also fitted to Eq. (38) to
obtain unbiased estimates for the thermal diffusivity. (a) N/a=1.0,
a=120°, (b) NM/a=0.5, «=90°. Parameters, L/a=32, M=15, and
7=1.0.

A. Shear viscosity

The Green-Kubo relation for the kinetic contribution to
the shear viscosity [22] is

oo

Jkin _ ]‘B_TTE/G(n 7, (44)
m -9

where the prime indicates that the =0 contribution to the
sum occurs with the weight 1/2, and

G(n7) = 2 (0 (0)v,, (0 (nT)v;,(nD))N(kgT)?.  (45)

i.j
In the molecular chaos approximation [22],

G(nt) =G (n7)=[1-2sin*(@)(M -1 +e™M)/MT".
(46)

Inserting this expression into Eq. (44) and summing, one
obtains the kinetic contribution to viscosity given in Table I.
Figure 9 contains a comparison of simulation results for
G(n7) with the molecular chaos approximation Eq. (46). As
can be seen, the first and the most important correlation con-
tribution to %" occurs for n=2. The functional form of this
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FIG. 7. Estimates for the thermal diffusivity Dy, in units of a>/ 7
for a=7=1.0, as a function of collision angle « for mean free paths
N a=0.5 (W) and 1.0 (@) obtained by fitting the decay of entropy
correlations, S;’q(k,t). The solid lines are the theoretical prediction
given in Table I, i.e., the sum of kinetic and collisional contribu-
tions. Parameters, L/a=32, M=15.

leading correlation correction, 5G(27)=G(27)-G,(27), can
be calculated analytically.

As illustrated schematically in Fig. 10, there are six dis-
tinct particle configurations which contribute. The first two,
shown in Figs. 10(a) and 10(b) occur when i=j in the sum in
Eq. (45); we will call these the diagonal contribution. In Fig.
10(a), particle k is in the same collision cell as i for both 7
=27 and r=7. In Fig. 10(b), two distinct particles, labeled k
and [/, are in the same collision cell as i at both t=27 and ¢
=7. Other (off-diagonal) contributions, which occur for i
#Jj, are given in Figs. 10(c)-10(f). These contributions are
significant only at small mean free paths, since their ampli-
tudes are proportional to the probability that two or more
particles are in the same collision cell for multiple times.

FIG. 8. Shear viscosity v and thermal diffusivity Dy (inset) as a
function of N/a, in units of a?/7 for a=7=1.0. Both plots are ob-
tained using the theoretical expressions given in Table I. The solid
and dotted lines are the kinetic and collisional contributions, respec-
tively. The dashed lines are the total contributions to these transport
coefficients. For consistency, in the calculation of thermal diffusiv-
ity, both the kinetic and collisional contributions are taken only up
to and including O(1/M). In the plots, N/a was varied by changing
kgT for fixed 7=1.0. Parameters, M =3 and a=60°.
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G(nt)

FIG. 9. Normalized stress correlations, G(n7), as a function of
time step n for N/a=0.25 and M =3. The inset shows the normal-
ized kinetic contribution to shear viscosity, Pking kgT'T, as a function
of time step. The measured values are open circles (O), and the
results of molecular chaos approximation, G.(n7) [see Eq. (46)], are
filled squares (H). The asterisk (%) in the main figure is the predic-
tion of Eq. (62) using the numerically determined values of the
probabilities. The asterisks in the inset are a plot of Eq. (64). Pa-
rameters, L/a=64, a=60°, m=1.0, and 7=1.0.

1. Diagonal contributions

The first diagonal contribution, which we denote by
8G,(27), occurs when two particles, with indices i and k, are
in the same collision cell at both =7 and r=27. The prob-
ability for this to occur is p,; p, is calculated in the A/a
— 0 limit in Appendix A. In two dimensions the velocity of
particle i at time t=nr7 is related to the velocities of its col-
lision partners at r=(n—1)7 by

017 = conl (1= D]+ =5 vl (= 1)7]
M k

+ s(viynn 7Syl - 1)7]),
k

0 (n7) = coln = D7l + < [n = 1)7]
: , >

- S(Uix[(n - D7]- 52 vl (n - 1)71), (47)
k

where c=cos(a) and s=sin(«). Using Eq. (47) to relate the
velocities at t=27 to those at t=7, we have

l

8G,(27) =2p,(M — 1)2 <Uix(0)viy(0)[§10ix(7') + fzvi}v(T)]

l-c s
X( ; Viy(7) + Evkx(T))>/N(kBT)2, (48)
where {,=1/M+c(1-1/M) and ¢,=s(1-1/M), and the fac-
tor (M —1) accounts for the sum over k# i and the factor 2
comes from the fact that i and k can interchange roles. The
equilibrium average in Eq. (48) entails the average over all
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FIG. 10. Diagrams contributing to correlations at t=27 in the
calculation of kinetic contributions to shear viscosity. The first two
diagrams show the diagonal and the others show the off-diagonal
contributions.

initial coordinates and velocities (at 7=0) as well as averages
over the stochastic rotations (+«) at t=7 and t=27. Perform-
ing the average over the collision angle at r=27 in Eq. (48)
removes all terms linear in s, so that
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2P2(

5G,(27) = ”E 00O (1 = ol Pogy (7

+ £50;, (D7) /N (kg T)?. (49)
Using Eq. (47) once again with n=1,

5Gl(27-) - ME <le(0)vz}(0)|:§l(] - C)[glle( )

+ zzv,;,,m)]( L0+ ,x<o>>

+ §23[§lviy(0 gZle(O)]< le(o)

- ﬁmm) ] >/N(kBT)2. (50)

Averaging now over the collision angle at =7 and the par-
ticle velocities and coordinates at t=0 yields

2P2(M 1)

8G,(27) = [£(1 =)+ &osT. (51)

The other diagonal contribution, which we will denote as
6G,(27), arises when three particles, with indices i, k, and [,
are in the same collision cell at =7 and t=27. The probabil-
ity that three particles are in the same collision cell in con-
secutive time steps will be denoted by ps; p; is calculated in
the N/a—0 limit in Appendix B. Using Eq. (47),

1-
8G,(27) =py(M - H(M-2) 3 <v,»x<o>v,»y<0)(76vkx(r>

s 1-c¢ s

- kay(T)><_M vy(7) + Mv]x(r))>/N(kBT)2,
(52)

where the prefactor (M —1)(M-2) comes from the double

sum over k, [. Averaging over the collision angle at r=27

yields

p3M—1)(M -2)

3T2 <Uix(0

X[(1 = € oDy, () = v (Do (D DINGhT).

(53)

8G,(27) = (0)

Finally, using Eq. (47) again and averaging over the collision
angle at r=7 and velocities and coordinates at =0 yields

p3M-1)(M-2)

5G2(2 T) = M4

[2c(c- D (54)

2. Off-diagonal contributions

The analysis of these contributions is very similar to that
which was used to evaluate the diagonal contributions, so we
provide fewer details than in the preceding section. There are
four off-diagonal contributions, all of which contribute with
probability p,. The first, 8G5(27), shown in Fig. 10(c), can
be written as
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5G3(27)=2p,(M - (M - <v,<x<o>v,-y<o>(%vu<r>

1 —
- %uiy T))( Mcvky(r) + kax(7)>>/N(kBT)2,
(55)

where the factor 2(M—1)(M —-2) accounts for i and k inter-
changing roles and the double sum over j and k. Following
the same procedure as was used to evaluate 6G;(27) and
8G,(27), we have

2p,(M -1)(M -2)
M3

8G5(27) = [2c(c = DG =) + Los].

(56)

The second contribution, 8G,(27), depicted in Fig. 10(d) can
be written as

6G4(27) =2p,(M - 1)(M - 2)2 <Uix(0)viy(0)[§1vjx(7)

+ §2v,y(7)]< vky(r) + kax(T))>/N(kBT)2,
(57)

where the prefactor is similar to that of 8G5(27). Using this
result, it is straightforward to show that

2py(M - 1)(M -2)

5G4(2 7') = M3

[2c(c = DIL(1 =) + &rs].
(58)

The third contribution involves the configuration shown in
Fig. 10(e). It is similar to the diagonal contribution 6G,(27)
except for the fact that the particle with index i is not in the
same shifted cell as k and [ at time 7=27. Only two particles
are in the same collision cell for consecutive time steps, so
that the relevant probability is p,. By analogy with the ex-
pression for 6G,(27),

po(M - 1)(M -2)(M -3)

M4

8Gs(27) = [2c(c—1)]%, (59)
where the factor of (M —3) comes from the additional sum
over j with the constraints i # j # k # [.

The final contribution, G4(27), occurs when i and j are
in the same collision cell at both r=27 and t=7 [see Fig.
10(f)]. This contribution is given by

6G6(27-) 2P2(M— 1)2 <U,X(O)U”(0)< M le T)

- éviy T))[glvjy('r) - §2ij(7)]>/N(kBT)2,
(60)

where the factor 2(M—1) accounts for the sum over j and
interchanging i and j. Following the same procedure as for
the other contributions, we find
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FIG. 11. Correlation contributions 6G(27) as a function of \/a.
Results for collision angles a=60° (O), 90° (), and 120° (>) are
presented. The asterisks () are the theoretical predictions in the
limit N/a— 0. Parameters, L/a=64, M=5, 7=1.0.

2py(M - 1)
8Go(2m) = = L&l =) + 5], (61)
The total correlation enhancement is obtained by summing
these six contributions,

6
8G(27) =2, 5G,(27). (62)

n=1

Note that the only dependence on the temperature and time
step 7 occur in the probabilities p, and ps;. The measured
correlation contributions to the shear viscosity are shown in
Fig. 11 as a function of A/a for @=60°, 90°, and 120°. Using
the A/a— 0 values for the probabilities p, and p5 calculated
in Appendixes A and B, one finds

6

5G(27) =Y, 6G,(27) =

n=1

41 {4M[1 + cos(a) ]}

+7(2 = M)cos?(a)) (63)

and

JRin — kB_TT(E’GC(m-) + 5G(27')> (64)

m n=0

for the shear viscosity. As can be seen from Fig. 11, the
results obtained using Eq. (63) (asterisks) are in excellent
agreement with simulation data in the limit of zero mean free
path. More generally, we have measured the probabilities p,
and p; numerically and confirmed that they depend, as ex-
pected, only on the value of the mean free path, \ (see inset
of Fig. 14 for a plot of p, as a function of \/a). Finally, these
results can be used in Eq. (62) to obtain an estimate of the
correlation contribution 8G(27) for arbitrary \. The asterisks
in Fig. 9 show the results of this procedure, and as might be
expected, the agreement is excellent. Finally, simulation re-
sults for the total kinetic contribution to the viscosity as a
function of time are shown in the inset to Fig. 9. The filled
squares (M) are the predictions of molecular chaos approxi-
mation, and asterisks are a plot of Eq. (64). The incipient
long-time tail is clearly visible in the figure. This is one of
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H(nt)

FIG. 12. Normalized velocity autocorrelation function H(n7) as
a function of time step n. Measurement values are shown by open
circles (O), the geometric series by filled squares (H), and the sum
of the geometric series and the correlation contributions [Eq. (71),
using the numerically determined p,] are shown by asterisks ().
The inset shows the normalized diffusion coefficient, D/kgT'7, as a
function of the time step n. The asterisks in the inset are a plot of
Eq. (70) using Eq. (71). Parameters, N/a=0.1, a=90°, L/a=64,
M=5, m=1.0, and 7=1.0.

the reasons that it has been difficult to obtain good estimates
for the “bare” kinetic contribution to the transport coeffi-
cients. In principle, the methods used to determine 6G(27)
can also be employed to determine these correlation contri-
butions at greater time lags.

B. Self-diffusion coefficient

The Green-Kubo relation for the self-diffusion coefficient
is [20]

D=];B—H-E’H(n7), (65)
m o
and

H(nT)=(v{(0) - vi(n7))/(kgT). (66)

Since the self-diffusion coefficient is a single-particle prop-
erty, there is no sum over i in Eq. (65). In the molecular
chaos approximation,

H(nt) = H.(n7) =2{cos(a) +[1 - cos(a)](1 — e™)/M}".
(67)

Inserting Eq. (67) into Eq. (65) and summing the resulting
geometric series, one can obtain the expression for the self-
diffusion coefficient in two dimensions given in Table I.
The self-diffusion coefficient is unique in that there is no
“collisional” contribution; as a result, correlation corrections
are much more important at small mean free path and can
lead to large corrections to the results obtained using the
molecular chaos approximation. Corrections to this result oc-
cur when two or more particles occupy the same collision
cell at different time steps. Figure 12 contains a comparison
of the molecular chaos approximation for the velocity auto-
correlation function, H(n7), (M) with simulation results (O).
The first of these correlation corrections, SH(27), occurs
at t=27. The contributing configuration, in which two par-
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FIG. 13. Schematic diagram showing the configuration contrib-
uting to correlations at r=27 in the calculation of self-diffusion
coefficient. Particles i and k are in the same shifted collision cell at
both =7 and t=27. There are M —1 such contributions with prob-
ability p,.

ticles, i and k, are in the same (shifted) cell at both =7 and
t=27, is shown in Fig. 13; the probability for this to occur is
again p,. The contribution of this configuration to the veloc-
ity autocorrelation function is

1-
5H(27') = ZPZ(M - 1)<vix(0)<76l}kx(7)

- ﬁvky(f)>>/(kgr), (68)

where the factor 2 arises since both x and y components
contribute; the factor M—1 accounts for the fact that k#i
can correspond to any of the M—1 particles. Following the
procedure outlined in the discussion of correlation effects to
the viscosity, it is straightforward to evaluate the averages in
Eq. (68). The final result is

2
SH(27) =2p,(M - 1)( 11;16) = 8(19‘/[1‘/[_21)[1 —cos(a)]?.

(69)

This is the only correlation correction at r=27. The probabil-
ity p, in Eq. (69) is determined analytically in the limit
N a—0 in Appendix A, where it is shown that p,=4/9 in
two dimensions. For finite \/a, it can be measured in simu-
lations. Figure 14 is a plot of simulation results for SH(27) as
a function of N/a for three different values of the collision
angle . The asterisks () are result of Eq. (69) using the
N a—0 prediction p,=4/9; as can be seen, the agreement
with simulation data is excellent. The inset in Fig. 14 shows
p» as a function of N/a. The value for the probability p, in
the limit A/a—0 is in excellent agreement with the result
derived in Appendix A.

It should be noted that p, is related to the quantity {; of
Ref. [27], which denotes the number of particles that are
neighbors of a given particle for two consecutive time steps;
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1
Aa

FIG. 14. Correlation contributions at =27 as a function of A/a
for the self-diffusion coefficient [SH(27)]. Results for collision
angles a=60° (O), 90° (J), and 120° (>>) are presented. The open
and filled symbols represent data obtained for 7=1.0 (kg7 varied)
and kgT=1.0 (7, varied), respectively. The asterisks (*) are the the-
oretical predictions in the limit A/a— 0. The inset shows the nu-
merically obtained probability p, as a function of mean free path for
the different parameters considered. Parameters, L/a=64, M =5.

more precisely, p,=({;—1)/(M~—1). While our results are in
general agreement with those of Ripoll et al., there seems to
be a misprint in Eq. (15) of Ref. [27] that makes a detailed
comparison with Eq. (69) difficult.

We have only considered correlation effects caused by
two particles occupying the same collision cell for the two
consecutive time steps. In fact, additional contributions arise
any time two particles find themselves in the same collision
cell for more than two time steps or after any number of time
steps. It is interesting to see just how important these latter
contributions are by summing up all possible contributions
from SH(27) and H, (7). Figure 15 shows the contributions
for the first five time steps in the series. In this approxima-
tion, the self-diffusion constant can be written as

[’

D= "B—TTE'[HL.(M) + 8H(n7], (70)
2m n=0
where
.
0, n<1,
SH(27), n=2,
SH(n7) =4 SH2DH.(7), n=3,
(1/2)6H(27)? + (3/2) SH(2TH.(27), n=4,
((3/4) SH(27)*H (1) +26H(27)H (37), n=5

are the contributions shown in Fig. 15. The solid lines in the
figure represent the factor SH(27), and the dashed lines rep-
resent the factor H.(7) from time steps where particles are
not correlated and the molecular chaos approximation is
valid. The resulting contribution of Eq. (71) is shown in Fig.
12 by asterisks (*). The agreement with simulations at t
=271s perfect, as expected, and the prediction for larger time
intervals is improved.
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FIG. 15. Schematic diagram of contributions from SH(27).
Solid lines, all of which have a length of two time steps, show the
time span during which particles stay in the same collision cell and
are therefore correlated. Dashed lines show the time span in which
particles are uncorrelated, so that the molecular chaos assumption is
valid. Each solid line will contribute a term SH(27) and dashed
lines will contribute a factor H,.(n7). SH(n7) for n=2,3,4,5 show
the first four contributions. Note that two consecutive solid lines,
i.e., as shown in SH (47), means that particle i is correlated twice for
two consecutive time steps, but not with the same particle.

At longer times, there are similar higher order correlation
effects arising, for example, when two particles are in the
same shifted cell for three consecutive time steps, etc. It is
straightforward to calculate these contributions explicitly us-
ing the current approach, and including these effects would
lead to an improved approximation at longer times. How-
ever, as discussed in the introduction, correlation effects
caused by particles which re-collide after longer time inter-
vals are more difficult to treat, since they depend in detail to
relative probabilities of various fluctuating flow configura-
tions. It would be extremely interesting to extend the analy-
sis to consider these contributions, which are the source of
long-time tails in the velocity autocorrelation function [34].

VII. CONCLUSION

This paper contains the first detailed analysis of equilib-
rium dynamic correlation functions using the SRD algo-
rithm. The dynamic structure factor, vorticity and entropy
density correlation functions were measured and used to pro-
vide unbiased estimates for the viscosity, thermal diffusivity,
and bulk viscosity. The results are in good agreement with
earlier numerical and theoretical results, and provide the first
direct verification that the bulk viscosity is zero for this al-
gorithm.

Table I contains a complete summary of analytical results
for the transport coefficients of this model, and the results of
this paper verify that we have an excellent understanding of
the SRD algorithm at the kinetic level and that the analytic
expressions for the transport coefficients do indeed provide a
very accurate description of the SRD fluid. Furthermore, the
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FIG. 16. Schematic diagram showing ways in which two par-
ticles can be in the same shifted cell at consecutive time steps. The
boxes with solid and dashed borders represent the shifted grids at
t=7 and t=27, respectively. &, is the shift at t=27. The coordinate
system uses the shifted frame at r=7 as a reference. Two particles
can be in (a) the same shifted cell £=0 at both t=7 and t=27, (b)
cells &=0 at t=7 and &=—a at t=27, or (c) cells &=0 at r=7 and
&é=a at t=27. For simplicity, only shifts in the x direction are
shown.

analysis of the dynamical structure factor and the dynamic
entropy density correlation function verify directly that the
algorithm satisfies the fluctuation-dissipation theorem. Veri-
fication studies of this type will be important for generaliza-
tions of the algorithm which model excluded volume effects
through the use of biased multiparticle collision rules which
depend on the local velocities and densities.

Finally, corrections to the self-diffusion coefficient and
shear viscosity arising from the breakdown of the molecular
chaos approximation at small mean free paths were analyzed.
In addition to deriving the form of the leading correlation
corrections to these transport coefficients, the probabilities
that two and three particles remain collision partners for con-
secutive time steps are derived analytically in the limit of
small mean free path. Extensions of this approach could be
used to study the development of long time tails in the ve-
locity and stress autocorrelation functions.
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APPENDIX A: CALCULATION OF p,

Random grid shifts in x and y directions are statistically
independent. We therefore first calculate the contribution
from shifts in the x direction; the final probability for general
shifts in two-dimensions is then obtained by squaring this
one-dimensional result. The following calculations are done
in the limit A/a—0, so that the particles do not move be-
tween time steps.

There are three different ways for two particles to be in
the same shifted cell at consecutive time steps (see Fig. 16).
If the shifted cell index at t=7, &(7) is zero, then &(27) can

PHYSICAL REVIEW E 74, 056702 (2006)

be either —a, 0 or a. Because these are mutually exclusive
events, the probability of each scenario must be calculated
separately and then summed.

L &(7)=0, §(27)=0

The situation is shown pictorially in Fig. 16(a). The prob-
ability plz‘ that two particles are in cell £=0 for two consecu-
tive time steps can be written as

1 (@2 al2 a+d, a+y

p;‘ = —4f dézf dé, dx, dx,0(x; = &)
a J_an —al2 8 0y
X[1-0@x;-a-5)]
X O, - &)1 -0(x,—a-68)],

where J; and o, are the shifts at times 7and 27, respectively.
Making the substitutions X;=x;-48, and X,=x,-6;, Eq.
(A1) becomes

1 al2 al2 a a
p?:jj d(szj dﬁlf dxlf dX2®(X1+61_52)
a J_an —al2 0 0

X[l - ®(X1 —-a+ 61 - 52)]
X @(X2+ 51 - 52)[1 - @(Xz—a+ 51 - 52)]

(A1)

(A2)

To simplify further, introduce p;=4,— 9, and integrate X,
and X, over the portion of the square where the integrand is
nonzero. This yields

1 al2 al2
szjf d52j ddy(a—|pi|)*. (A3)
a J_an —al2
Using, finally,
al2 al2
f ds, f dé =ad, (A4)
—al2 —al2
al2 al2 a3
f d52f d51|P1| = ? (A5)
—al2 —al2
al2 al2 a4
f ds, J dépt=—, (A6)
—al2 —al2 6
Eq. (A3) gives
ph=l-3+¢=73. (A7)

2. gs(7)=09 gs(ZT)=_a
This situation is illustrated in Fig. 16(b). The probability

pf that two particles are in cell {=0 at t=7 and §,=—a at ¢
=271is

1 al2 al2 a+9d) a+6)
Pi=— f dsé f dé, dx, A0 (x; +a—5)
aJ_an —al2 5 D)
X[l - ('*)(xl - 52)] X @(x2+a - 52)[1 - @(XQ— 52)]
(A8)

Making the substitutions X;=x;-48, and X,=x,-6;, Eq.
(A8) becomes
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1 al2 al2 a a
Ph=— f ds f dé, f dX, J dX>-0X,+a+6,- &)
a J_an —al2 0 0

X[1=-0X,+86,-8)]X0O0X,+a+ 8 -8)[1-0(X,
+6,-8)]. (A9)
As in the preceding section, introducing p; = 6;—J, and in-

tegrating X, and X, over the portion of the square where the
integrand is nonzero yields

1 1
Pi==| d&|  dslpO(-p)=—. (A10)
a 12
—al2 —al2

3. §s(7)=09 fs(27)=a

Referring to Fig. 16(c). the probability p$ that two par-
ticles are in cell £=0 at t=7 and §,=a at t=271is

1 al2 al2 a+6; a+6;
pg= _4J dazf délf f de®(X1 —-a+ 52)
a J_an —al2

X[l - @()Cl —-2a+ 52)]@(X2 -
X[1=0(x,—2a+68)].

a+ 6
(A11)

Making the same change of variables as in the previous two
cases, Eq. (A11) becomes

1 al2 al2 a a
pg:jf d&zf dﬁlf dxlf dX2®(X1—a+51+52)
a J_an —al2 0 0

X[l - ®(X1 -2a+ 51 + 52)]®(X2—
X[l - ®(X2— 2a + 51 + 52)]

a+ 51 + 62)
(A12)

Introducing now p,=6,+9, and performing the integrals
over X, and X, yields

1

5= d52f do,p,"0(p) = -
a J_an —al2

(A13)

The final result in two dimensions is obtained by summing
the results given in Egs. (A7), (A10), and (A13), and squar-
ing, so that
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4

Pz—(P2+P2+P )2_' (A14)

In d dimensions, the corresponding result is p,=(2/3)%.

APPENDIX B: CALCULATION OF p;

The calculation of p; in the limit A/a— 0 is similar to that
of p, in the preceding Appendix. There are three scenarios,
as depicted in Fig. 16 (with three particles instead of two). p5
is the probability that three particles are in the =0 for two
consecutive time steps:

1 al2 al2 a+6; a+6; a+68,
p‘?: _Sf dﬁzf d51f dxlf def d)C3®
aJ_an —al2

&H[1-0(x;—a-8)]0(x, - 5,)
X[1=0(x,—a—-8)]0(x; - &)[1-0(x; -

X (x) =
a-5)].
(B1)

To evaluate this integral, make the same change of variables
to X; and X, as in the preceding Appendix and introduce

p1=90,—05,. Performing the X integrals then gives
1
ps="5 s, f déd(a~=pi])’. (B2)
@ J_ap —al2
Using
f d52f dési|pi’ = — (B3)
—-al2 —-al2

and Egs. (A4)-(A6) and (B3), Eq. (B2) yields

Pi=l-1+1-3=% (B4)

The calculations of p% and p§ are similar to those outlined in
Appendixes A 2 and A 3, and both are equal to 1/20. Sum-
ming these results,

p3=h+p5+p$)P=13 (B5)

in two dimensions. In d dimensions, the corresponding result
is p3=(1/2).
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